Skip to main content
Log in

Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare

  • Aquaculture and Fisheries
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Flavobacterium columnare is the pathogenic agent of columnaris disease in aquaculture. Using a recently developed gene deletion strategy, two genes that encode the Glyco_hydro_19 domain (GH19 domain) containing proteins, ghd-1 and ghd-2, were deleted separately and together from the F. columnare G4 wild type strain. Surprisingly, the single-, Δghd-1 and Δghd-2, and double-gene mutants, Δghd-1 Δghd -2, all had rhizoid and non-rhizoid colony morphotypes, which we named Δghd-1, Δghd-2, Δghd-1 Δghd-2, and NΔghd-1, NΔghd-2, and NΔghd-1 Δghd-2. However, chitin utilization was not detected in either these mutants or in the wild type. Instead, skimmed milk degradation was observed for the mutants and the wild type; the non-rhizoid strain NΔghd-2 exhibited higher degradation activity as revealed by the larger transparent circle on the skimmed milk plate. Using zebrafish as the model organism, we found that non-rhizoid mutants had higher LD50 values and were less virulent because zebrafish infected with these survived longer. Transcriptome analysis between the non-rhizoid and rhizoid colony morphotypes of each mutant, i.e., NΔ ghd -1 versus (vs) Δghd-1, NΔghd-2 vs Δghd-2, and NΔghd-1 Δghd-2 vs Δghd-1 Δghd-2, revealed a large number of differentially expressed genes, among which 39 genes were common in three of the pairs compared. Although most of these genes encode hypothetical proteins, a few molecules such as phage tail protein, rhs element Vgr protein, thiol-activated cytolysin, and TonB-dependent outer membrane receptor precursor, expression of which was down-regulated in non-rhizoid mutants but up-regulated in rhizoid mutants, may play a role F. columnare virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez B, Secades P, McBride M J, Guijarro J A. 2004. Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol., 70 (1): 581–587.

    Article  Google Scholar 

  • Beck B H, Li C, Farmer B D, Barnett L M, Lange M D, Peatman E. 2015. A comparison of high-and low-virulence Flavobacterium columnare strains reveals differences in iron acquisition components and responses to iron restriction. J. Fish Dis., 39 (3): 259–268.

    Article  Google Scholar 

  • Beier S, Bertilsson S. 2013. Bacterial chitin degradationmechanisms and ecophysiological strategies. Front. Microbiol., 4: 149, http://dx.doi.org/10.3389/fmicb.2013.00149.

    Article  Google Scholar 

  • Bernardet J F. 1989. ‘Flexibacter columnaris’: first description in France and comparison with bacterial strains from other origins. Dis. Aquat. Org., 6: 37–44.

    Article  Google Scholar 

  • Chaudhuri S, Gantner B N, Ye R D, Cianciotto N P, Freitag N E. 2013. The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity. mBio, 4 (2): e00617–12.

    Article  Google Scholar 

  • Dabo S M, Confer A W, Quijano-Blas R A. 2003. Molecular and immunological characterization of Pasteurella multocida serotype A: 3 OmpA: evidence of its role in P. multocida interaction with extracellular matrix molecules. Microb. Pathog., 35 (4): 147–157.

    Google Scholar 

  • Declercq A M, Haesebrouck F, van den Broeck W, Bossier P, Decostere A. 2013. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet. Res., 44: 27.

    Article  Google Scholar 

  • Decostere A, Haesebrouck F, van Driessche E, Charlier G, Ducatelle R. 1999. Characterization of the adhesion of Flavobacterium columnare (Flexibacter columnaris) to gill tissue. J. Fish Dis., 22 (6): 465–474.

    Article  Google Scholar 

  • Dong H T, Senapin S, LaFrentz B, Rodkhum C. 2015. Virulence assay of rhizoid and non-rhizoid morphotypes of Flavobacterium columnare in red tilapia, Oreochromis sp., fry. J. Fish Dis., 39 (6): 649–655.

    Article  Google Scholar 

  • Duchaud E, Boussaha M, Loux V, Bernardet J F, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessières P, Gibrat J F, Claverol S, Dumetz F, Le Hénaff M, Benmansour A. 2007. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat. Biotechnol., 25 (7): 763–769.

    Article  Google Scholar 

  • Dumetz F, Duchaud E, Claverol S, Orieux N, Papillon S, Lapaillerie D, Le Hénaff M. 2008. Analysis of the Flavobacterium psychrophilum outer-membrane subproteome and identification of new antigenic targets for vaccine by immunomics. Microbiology, 154 (6): 1793–1801.

    Article  Google Scholar 

  • Edwards R A, Keller L H, Schifferli D M. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene, 207 (2): 149–157.

    Article  Google Scholar 

  • Fujita K, Shimomura K, Yamamoto K, Yamashita T, Suzuki K. 2006. A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem. Biophys. Res. Commun., 345 (1): 502–507.

    Article  Google Scholar 

  • Gay P, Le Coq D, Steinmetz M, Ferrari E, Hoch J A. 1983. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J. Bacteriol., 153 (3): 1424–1431.

    Google Scholar 

  • Gooday G W. 1990). Physiology of microbial degradation of chitin and chitosan. In: Ratledge C ed. Biochemistry of Microbial Degradation. Springer, Dordrecht, Netherlands. p.279–312.

    Google Scholar 

  • Hackman R H. 1962. Studies on chitin V. The action of mineral acids on chitin. Aust. J. Biol. Sci., 15 (3): 526–537.

    Google Scholar 

  • Hoell I A, Vaaje-Kolstad G, Eijsink V G H. 2010. Structure and function of enzymes acting on chitin and chitosan. Biotechnol. Genet. Eng. Rev., 27 (1): 331–366.

    Article  Google Scholar 

  • Kesari P, Patil D N, Kumar P, Tomar S, Sharma A K, Kumar P. 2015. Structural and functional evolution of chitinase-like proteins from plants. Proteomics, 15 (10): 1693–1705.

    Article  Google Scholar 

  • Kharade S S, McBride M J. 2014. Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J. Bacteriol., 196 (5): 961–970.

    Article  Google Scholar 

  • Koskiniemi S, Lamoureux J G, Nikolakakis K C, t’Kint de Roodenbeke C, Kaplan M D, Low D A, Hayes C S. 2013. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. U. S. A., 110 (17): 7032–7037.

    Article  Google Scholar 

  • Kubota T, Miyamoto K, Yasuda M, Inamori Y, Tsujibo H. 2004. Molecular characterization of an intracellular ß-N -acetylglucosaminidase involved in the chitin degradation system of Streptomyces thermoviolaceus OPC-520. Biosci. Biotechnol. Biochem., 68 (6): 1306–1314.

    Article  Google Scholar 

  • Kumari S, Rath P K. 2014. Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater. Sci., 6: 482–489.

    Article  Google Scholar 

  • Kunttu H M T, Jokinen E I, Valtonen E T, Sundberg L R. 2011. Virulent and nonvirulent Flavobacterium columnare colony morphologies: characterization of chondroitin AC lyase activity and adhesion to polystyrene. J. Appl. Microbiol., 111 (6): 1319–1326.

    Article  Google Scholar 

  • Kunttu H M T, Suomalainen L R, Jokinen E I, Valtonen E T. 2009. Flavobacterium columnare colony types: connection to adhesion and virulence? Microb. Pathog., 46 (1): 21–27.

    Google Scholar 

  • Laanto E, Penttinen R K, Bamford J K H, Sundberg L R. 2014. Comparing the different morphotypes of a fish pathogen -implications for key virulence factors in Flavobacterium columnare. BMC Microbiol., 14: 170.

    Article  Google Scholar 

  • Li N, Qin T, Zhang X L, Huang B, Liu Z X, Xie H X, Zhang J, McBride M J, Nie P. 2015. Gene deletion strategy to examine the involvement of the two chondroitin Lyases in Flavobacterium columnare virulence. Appl. Environ. Microbiol., 81 (21): 7394–7402.

    Article  Google Scholar 

  • Lu Q Z, Ni D S, Ge R F. 1975. Studies on the gill diseases of the grass carp (Ctenopharyngodon idelluls). Isolation of a myxobacterial pathogen. Acta Hydrobiol. Sin., 5 (3): 315–334. (in Chinese with English abstract)

    Google Scholar 

  • McBride M J, Kempf M J. 1996. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J. Bacteriol., 178 (3): 583–590.

    Article  Google Scholar 

  • McBride M J, Nakane D. 2015. Flavobacterium gliding motility and the type IX secretion system. Curr. Opin. Microbiol., 28: 72–77.

    Article  Google Scholar 

  • McBride M J, Zhu Y T. 2013. Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J. Bacteriol., 195 (2): 270–278.

    Article  Google Scholar 

  • McBride M J. 2001. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol., 55: 49–75.

    Article  Google Scholar 

  • Michel E, Reich K A, Favier R, Berche P, Cossart P. 1990. Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol. Microbiol., 4 (12): 2167–2178.

    Article  Google Scholar 

  • Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Meth ods., 5 (7): 621–628.

    Article  Google Scholar 

  • Murthy N, Bleakley B. 2012. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internet. J. Microbiol., 10 (2): 14186.

    Google Scholar 

  • Pauer H, Cavalcanti S N V, Teixeira F L, Santos-Filho J, Vommaro R C, Oliveira A C S C, Ferreira E O, Domingues R R M C P. 2013. Inactivation of a fibronectin-binding TonB-dependent protein increases adhesion properties of Bacteroides fragilis. J. Med. Microbiol., 62 (10): 1524–1530.

    Article  Google Scholar 

  • Pukatzki S, Ma A T, Revel A T, Sturtevant D, Mekalanos J J. 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. U. S. A., 104 (39): 15508–15513.

    Article  Google Scholar 

  • Reed L J, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am. J. Hyg., 27 (3): 493–497.

    Google Scholar 

  • Rhodes R G, Nelson S S, Pochiraju S, McBride M J. 2011. Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J. Bacteriol., 193 (3): 599–610.

    Article  Google Scholar 

  • Rinaudo M. 2006. Chitin and chitosan: properties and applications. Prog. Polym. Sci., 31 (7): 603–632.

    Article  Google Scholar 

  • Shieh H S. 1980. Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Lett., 13: 129–133.

    Google Scholar 

  • Smith S G J, Mahon V, Lambert M A, Fagan R P. 2007. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol. Lett., 273 (1): 1–11.

    Article  Google Scholar 

  • Staats C C, Kmetzsch L, Lubeck I, Junges A, Vainstein M H, Schrank A. 2013. Metarhizium anisopliae chitinase CHIT30 is involved in heat-shock stress and contributes to virulence against Dysdercus peruvianus. Fungal Biol., 117 (2): 137–144.

    Article  Google Scholar 

  • Stringer-Roth K M, Yunghans W, Caslake L F. 2002. Differences in chondroitin AC lyase activity of Flavobacterium columnare isolates. J. Fish Dis., 25 (11): 687–691.

    Article  Google Scholar 

  • Štrojsová M, Vrba J. 2005. Direct detection of digestive enzymes in planktonic rotifers using enzyme-labelled fluorescence (ELF). Mar. Freshwater Res., 56 (2): 189–195.

    Article  Google Scholar 

  • Suomalainen L R, Tiirola M, Valtonen E T. 2006. Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J. Fish Dis., 29 (12): 757–763.

    Article  Google Scholar 

  • Tekedar H C, Karsi A, Gillaspy A F, Dyer D W, Benton N R, Zaitshik J, Vamenta S, Banes M M, Gülsoy N, Aboko-Cole M, Waldbieser G C, Lawrence M L. 2012. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J. Bacteriol., 194 (10): 2763–2764.

    Article  Google Scholar 

  • Vrba J, Šimek K, Pernthaler J, Psenner R. 1996. Evaluation of extracellular, high-affinity ß-N -acetylglucosaminidase measurements from freshwater lakes: an enzyme assay to estimate protistan grazing on bacteria and picocyanobacteria. Microb. Ecol., 32 (1): 81–97.

    Article  Google Scholar 

  • Xie H X, Nie P, Chang M X, Liu Y, Yao W J. 2005. Gene cloning and functional analysis of glycosaminoglycandegrading enzyme chondroitin AC lyase from Flavobacterium columnare G 4. Arch. Microbiol., 184 (1): 49–55.

    Article  Google Scholar 

  • Xie H X, Nie P, Sun B J. 2004. Characterization of two membrane-associated protease genes obtained from screening out-membrane protein genes of Flavobacterium columnare G 4. J. Fish Dis., 27 (12): 719–729.

    Article  Google Scholar 

  • Youderian P, Hartzell P L. 2007. Triple mutants uncover three new genes required for social motility in Myxococcus xanthus. Genetics, 177 (1): 557–566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Nie  (聂品).

Additional information

Supported by the Chinese Academy of Sciences (No. XDA08010207), the National Key Technology R&D Program of China (No. 2012BAD25B02), and the State Key Laboratory of Freshwater Ecology and Biotechnology (No. 2016FBZ04)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, N., Qin, T. et al. Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare. Chin. J. Ocean. Limnol. 35, 1511–1523 (2017). https://doi.org/10.1007/s00343-017-6160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6160-z

Keywords

Navigation